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We report a universal inherent packing structure underlying the simple liquids, the normalized distribution
functions of which are independent of temperature and density. The inherent packing state, carrying the
maximized configurational entropy, has intrinsic connections with the maximally random jammed state of hard
spheres.
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Whereas the physics of liquids can be comprehended with
the theory of thermodynamics and hydrodynamics[1], find-
ing a unifying structural description for liquids remains a
grand challenge in science[2]. The complexity of a liquid
arises from the immense configurational space that it can
access, where an organizing principle, such as the well-
defined periodicity for crystals, is absent. The internal atomic
arrangements of a liquid change with time as well, sampling
the energy landscape associated with the atomic configura-
tions. The difficulty in characterizing the liquid structure can
be mitigated by studying its inherent, or “frozen-in” structure
[3], where the influence of the thermal motions is removed.
The inherent structuresISd is obtained by mapping the con-
figurations onto the local minima of the potential energy sur-
face [3]. The atomic packing of the IS is the subject of this
paper.

For the glasses formed by quenching the liquid, a struc-
tural model is that of Bernal’s of static random-close-packing
sRCPd of hard spheres[4,5]. However, the RCP state and its
density(packing fraction) is found heavily dependent on the
packing or densification protocols[5]. Only very recently has
a unique RCP structure been defined—the maximally ran-
dom jammedsMRJd state of hard spheres[6]. Also, the
glasses usually differ in structure from their liquid precur-
sors, due to, for example, the complex structural relaxation
that occurs during the quench. A link between the liquid, or
the atomic packing of its inherent structure, and the RCP is
hitherto not established.

In this paper, we analyze the geometrical packing struc-
ture of the mechanically stable IS that underlies the liquid.
The inherent packing(IP) uncovered will be correlated with
the MRJ state. Standard molecular-dynamicssMDd simula-
tion methods[7] and a monatomic Lennard-Jones system are
employed, using canonicalsNVTd ensembles with periodic
boundary conditions. The truncated and shifted force field
[8] was used with a cutoff distancerc=2.5. Reduced units are
used: length in units ofs, temperaturesTd in units of « /kB,
and time in units ofÎs2m/«, wherem is the mass of the
particles. The time step is 0.0024. Temperature control was
achieved by coupling the system with a Nose-Hoover ther-
mostat.

In our simulations, IS is obtained by finding the local
minima of the potential energy surface[3,9]. Energy mini-

mization using the conjugate gradient method was performed
on each instantaneous configuration without interrupting the
dynamics of the system. The IS of the liquid system along an
isochoric path is shown in Fig. 1. The energy landscape is
observed to encompass three distinct regions: the equilibrium
liquid at high temperatures, the supercooled liquid at inter-
mediate temperatures, and the glassy state below the glass
transition temperature.

Above a transition temperatureTA, the average IS energy
seISd is constant at all temperatures. The gradual change of
eIS at TA signifies the onset of the slow dynamics, and the
entrance into the supercooled region. In the supercooled re-
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FIG. 1. (Color online) (a) The potential energy of the inherent
structuresseISd of a Lennard-Jones monatomic system(r=0.9,864
particles) along an isochoric pathscooling rate=0.01d. The liquid
freezes into the glass belowTg=0.12. Each data point represents
200 configurations. For comparison, the actual melting temperature
Tm and the thermodynamic melting temperatureTth of the corre-
sponding LJ crystal are also shown[30]. (b) The change of the local
bond-orientational ordersQ6d and the translational order parameter
std of the inherent structures during the quench. Each data point
represents 50 configurations.
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gion, the liquid falls out of equilibrium, sampling deeper
basins where structural relaxation is expected to set in. Glass
transition eventually takes place when the temperature drops
to T=0.12, when the system is trapped in the basin of attrac-
tion and the activation process dominates[9].

The liquid transitions demonstrated in the energy land-
scape paradigm can be ascribed to its structural changes, e.g.,
icosahedral ordering[10–12]. To better quantify the struc-
tural changes, we use two order parameters: the orientational
and its conjugated translational order parameter[13–16].
Here we adopt the local bond-orientational order parameter
[14], Q6, which is found to be more sensitive and stable to
the structural change than the global order parameter as
originally proposed by Steinhardtet al. [10]. The Voronoi
construction method[17] is used to precisely determine the
local bonds of individual atoms. To evaluate the translational
order parametert we calculatet=s1/scde0

scugssd−1uds [15],
where,s=rr1/3 is the radial distance scaled by the number
density,gssd is the pair correlation function,sc=3.5 is a nu-
merical cutoff. As shown in Fig. 1(b), both Q6 andt of the
IS’s change monotonically withT, consistent with the energy
landscape picture. In the equilibrium liquid state, these order
parameters are the smallest and independent of the initial
states. By contrast, in the off-equilibrium state, the structural
order develops progressively, as reflected from the increase
of Q6 andt, until the final glassy state is attained.

An important implication of Fig. 1 is that the IS’s of the
equilibrium liquid have the same degree of order. This sug-
gests a unique statistical arrangement of the atoms in the
IS’s. To shed light on the details of the atomic distributions,
we preformed an in-depth geometrical statistical analysis on
the system using the Voronoi tessellation method, shown in
Fig. 2. The Voronoi polyhedra offer direct information about
the coordination, size, and asphericity of individual atoms,
through which, the nature of the atomic packing can be char-
acterized. For the high-T liquids, the Voronoi cell volume
distribution (defined in terms of its probability distribution
function) changes withT, and can be best fitted by a three-
parameter log-normal function,

Psv*d =
eflnsv* − vmin

* d − ln va
* g2/2s2

Î2psv* − vmin
* ds2

,

wherevmin
* , va

* , and s are fitting parameters. The universal
distribution rule may explain why the liquids can be scaled
onto one master curve, as shown by Starret al. [18]. Simi-
larly, the standard deviationsv scales withT as sv~T0.25,
reflecting the changes in the vibration properties of the par-
ticles as a function ofT [18]. The high-T liquids exhibit
nonsymmetric characteristics: with decreasingT, the mean
value of the sphericity drops, in accord with the order param-
eter changes in Fig. 1(b). The inherent structures, in contrast,
behave very differently: both the Voronoi cell volume distri-
bution and the asphericity distribution fall upon the same
master curves, irrespective ofT, Fig. 2(b). This feature indi-
cates anidentical inherent packingsIPd of all the liquid
structures, in terms of the statistical distributions. Other sta-
tistical metrics confirm this observation: the average number
of faces and edges per face are also virtually identical for all

T.1.1. Moreover, the IP of other studied densities(ranging
from 0.8 to 1.2) showed the same geometrical statistics, in-
dicating its universality.

On the contrary, configurations for the IS belowTA ex-
hibit distribution profiles distinctly different from the IP of
the equilibrium liquid. For the glassessT,Tgd, both the vol-
ume and the asphericity probability curves sharpen consider-
ably (not shown), suggesting the localization of short-range
ordering consistent with the decrease in energy(Fig. 1).

Naturally, one wishes to explore the similarity between
the IP observed here and the unique packing of MRJ state of
hard spheres[6]—a recently proposed concept to define an
ideal amorphous solid[19]. The MRJ state can be generated
by compressing a hard-sphere fluid at an infinite compres-
sion rate as described by Lubachevesky and StillingersLSd
[5,14,20]. We reproduced the MRJ state with an average
packing fraction of 0.639 in 50 compression runs by using
the LS algorithm with very large compression rates. Chang-
ing the compression rate only prolongs the simulation time to
reach the strictly jammed state, without affecting the stable
MRJ packing fraction attainable. A different packing proto-
col using the Jordrey-Tory method[21] yielded the same

FIG. 2. (Color online) Geometrical statistics of the simple liquid
(T=1.0,2.0,5.0, respectively) and the corresponding IS atr=0.9.
The reduced volumen* is defined as:v* =rv. The volume probabil-
ity distributionPsn*d is contrasted for(a) the inherent structures(b)
the liquids at different temperatures, where the solid lines are the
best fit of the probability distribution using the log-normal function.
The asphericity[j=s1/36pdsa3/v2d, wherea is the surface area of
the Voronoi polyhedron, andv is its volume] probability distribu-
tions Psjd are shown for(c) the inherent structures; and(d) the
liquids at selected temperatures. Each line represents the average of
50 configurations of 10 976 particles.
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structure with the packing fraction of 0.639. Subsequent
Voronoi construction of the as-obtained MRJ state gives the
volume distribution curve in Fig. 3, which exhibits some
differences from that of the IP structure. However, a more
detailed geometrical analysis shown in Fig. 3 reveals that the
MRJ and the IP states are closely related, in terms of their
structure factors, bond-orientational order parameters, as
well as bond properties.

If treating the Lennard-JonessLJd system as the packing
of rigid spheres, we can obtain the effective diameters of the
inscribed spheres from the Voronoi polyhedra. Figure 3(b)
shows that this diameter has a distribution with a standard
deviation of 0.015, which corresponds to,5% of the mean.
This significant size dispersity, in contrast to the delta size
distribution of the spheres used to reach the MRJ state, ex-
plains the broadening of the volume distribution seen in Fig.
3(a) for the IP structure. Using this size dispersity, the real
packing fraction was found to be 0.64±0.01, identical to that
of the MRJ state. The apparent size dispersity originates
from the interatomic potentials used in the MD simulations.
A harder interatomic potential results in a narrower size dis-
tribution, and vice versa, and is expected as it helps to relieve
the strains and stabilize the disclination lines, thus lowering
the overall free energy in relaxation. As such, the IP geom-

etry is not reached by simply mechanically jamming a
single-sized or polydispersed hard-sphere ensemble.

The IP and MRJ states are mutually accessible. For in-
stance, the MRJ state can be relaxed using real interatomic
potentials(LJ in our case) by minimizing the potential en-
ergy of the system and finding a local minimum. Subsequent
Voronoi tessellation shows that the geometry of the relaxed
MRJ state is exactly the same as that of the IP obtained using
the same specific potential. This indicates that the IP of the
liquid is intrinsically connected with the MRJ state.

The packing complexity can be represented by its packing
entropy that can be deduced from the size and shape distri-
butions[22,23]. We estimate the configurational entropy us-
ing the Stillinger-Webber decomposition method[3,24,25],

SconfsT,V0d = SsT,V0d − SharmsT,V0d − SanhsT,V0d,

at eachT. Here,S is the total liquid entropy, andSharm and
Sanh are the entropies due to the harmonic and anharmonic
vibrations, respectively. To calculate the liquid entropy we
perform a thermodynamic integration first along theT=10
isotherm, from infinite volume down toV0, followed by aT
integration of the specific heat at fixed volumeV0 according
to

S= S0 +E
T0

T 1

T
S ] EsTd

] T8
DdT8.

By incorporating the kinetic contribution, we obtain an ana-
lytical expression which can be extrapolated to lower tem-
peratures.Sharm is given by

Sharm= kBs3N − 3dF1 − lnS hn̄

kBT
DG ,

whereN is the number of atoms,kB Boltzmann’s constant,
h Planck’s constant, andn is the calculated geometric mean
value of the vibrational normal-mode frequencies

FIG. 4. (Color online) Evaluation of the(intensive) configura-
tional entropy of the inherent structures in Fig. 1. The dashed line
for the total entropy of the liquid was extrapolated according toS
−1.5NkBln T=11.0658−3.4066T−0.34. TK denotes the hypothetical
Kauzmann temperature whereSconf of the liquid vanishes.

FIG. 3. (Color online) Comparison between the inherent struc-
ture of the liquidsr=0.9d and the MRJ state of hard spheres.(a)
The volume distribution.(b) The probability distribution of the
atomic diameterPsDd showing the size dispersity in the inherent
packing. The solid line is the best Gaussian fit.(c) The static struc-
ture factors,Ssqd. (d) The local bond-orientaional parametersQl; (e)
the percentage of average edges per facekel of the Voronoi poly-
hedra; Note that fivefold symmetric bonds correspond tokel equal
to 5. Solid lines: inherent packing of the liquid; dashed lines: MRJ
of hard spheres.
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n̄=pi=1
3N−3snid1/3N−3. To obtain Sanh, we first evaluate

Eanh=EsTd−EISsTd−NkBT/2, and fitEanh with a polynomial
starting from the quadratic term. Consequently,Sanh can be
estimated by thermodynamic integration along the isochoric
path betweenT=0 and the desiredT.

The result given in Fig. 4 shows that theSconf remains
constant for all high-T equilibrium liquids. Interestingly, the
IP is a structure with the maximized configurational entropy,
Sconf=1.5 NkB, larger than the packing entropy of hard
spheres,Sconf=1.0 NkB [26]. The excess entropySex can be
attributed to the contributions from the size dispersity result-
ing from the application of real potentials at the given system
volume. Thus, for the IP structure,Sconf=SMRJ+Sex, where
SMRJ stands for the packing entropy of the MRJ state of hard
spheres. This indicates that the latter is actually the unique
state with the maximum packing entropy before relaxation.

Upon supercooling to the Kauzmann temperature, calcu-
lated to beTK=0.075,Sconf decreases to that of the corre-
sponding crystal, resulting in an ideal glass. This low entropy
state is the opposite of the IP state. Any real amorphous
matter should haveSconf (and corresponding structural disor-

der) in the range bounded by these two idealized solids, i.e.,
the ideal glass and the ideal amorphous solid.

The inherent packing structure of the liquid can be uti-
lized as the reference state for theoretical calculations in lieu
of other approximations. In the density functional theory, an
underlying structure for the liquid has long been suggested,
e.g., the Bernal model generated using the Bennett algorithm
[28] was taken as the reference structure in the simulation of
hard-sphere liquids[27]. Our work provides the concrete evi-
dence that a statistically unique underlying structure can in-
deed be defined, as well as a methodology to reach it. Due to
its mechanical stability and maximum randomness, the ideal
amorphous state is also useful for studies on the thermody-
namics, physical properties, and deformation mechanisms of
amorphous matter, including complex systems exhibiting
liquid-liquid polyamorphic transitions[29].
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